Counting planar Eulerian orientations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting the Number of Eulerian Orientations

Consider an undirected Eulerian graph, a graph in which each vertex has even degree. An Eulerian orientation of the graph is an orientation of its edges such that for each vertex v, the number of incoming edges of v equals to outgoing edges of v, i.e. din(v) = dout(v). Let P0 denote the set of all Eulerian orientations of graph G. In this paper, we are concerned with the questions of sampling u...

متن کامل

On the number of planar Eulerian orientations

The number of planar Eulerian maps with n edges is well-known to have a simple expression. But what is the number of planar Eulerian orientations with n edges? This problem appears to be difficult. To approach it, we define and count families of subsets and supersets of planar Eulerian orientations, indexed by an integer k, that converge to the set of all planar Eulerian orientations as k incre...

متن کامل

Sampling and Counting 3-Orientations of Planar Triangulations

Given a planar triangulation, a 3-orientation is an orientation of the internal edges so all internal vertices have out-degree three. Each 3-orientation gives rise to a unique edge coloring known as a Schnyder wood that has proven powerful for various computing and combinatorics applications. We consider natural Markov chains for sampling uniformly from the set of 3-orientations. First, we stud...

متن کامل

Reliable Orientations of Eulerian Graphs

We present a characterization of Eulerian graphs that have a k-arc-connected orientation so that the deletion of any vertex results in a (k− 1)-arc-connected directed graph. This provides an affirmative answer for a conjecture of Frank [2]. The special case, when k = 2, describes Eulerian graphs admitting 2-vertexconnected orientations. This case was proved earlier by Berg and Jordán [1]. These...

متن کامل

Counting Unique-Sink Orientations

Unique-sink orientations (USOs) are an abstract class of orientations of the ncube graph. We consider some classes of USOs that are of interest in connection with the linear complementarity problem. We summarise old and show new lower and upper bounds on the sizes of some such classes. Furthermore, we provide a characterisation of K-matrices in terms of their corresponding USOs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2018

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2018.02.040